Ulam–Hyers stabilities of a differential equation and a weakly singular Volterra integral equation
نویسندگان
چکیده
Abstract In this work we study the Ulam–Hyers stability of a differential equation. Its proof is based on Banach fixed point theorem in some space continuous functions equipped with norm $\|\cdot \|_{\infty }$ ∥ ⋅ ∞ . Moreover, get results weakly singular Volterra integral equation using contraction principle $C([a,b])$ C ( [ a , b ] )
منابع مشابه
A simple algorithm for solving the Volterra integral equation featuring a weakly singular kernel
There are many methods for numerical solutions of integral equations. In various branches of science and engineering, chemistry and biology, and physics applications integral equation is provided by many other authors. In this paper, a simple numerical method using a fuzzy, for the numerical solution of the integral equation with the weak singular kernel is provided. Finally, by providing three...
متن کاملNumerical solution of a type of weakly singular nonlinear Volterra integral equation by Tau Method
In this paper, a matrix based method is considered for the solution of a class of nonlinear Volterra integral equations with a kernel of the general form $s^{beta}(t-s)^{-alpha}G(y(s))$ based on the Tau method. In this method, a transformation of the independent variable is first introduced in order to obtain a new equation with smoother solution. Error analysis of this method is also ...
متن کاملCollocation Solutions of a Weakly Singular Volterra Integral Equation
p(t, s) := s tμ , (1.2) where μ > 0, K(t, s) is a smooth function and g is a given function, can arise, e.g., in heat conduction problems with mixed boundary conditions ([2], [10]). The case when K(t, s) = 1 has been considered in several papers. The following lemma summarizes the analytical results for (1.1) in the case K(t, s) = 1. Lemma 1.1. (a) [12] Let μ > 1 in (1.2). If the function g bel...
متن کاملExtrapolation Methods for a Nonlinear Weakly Singular Volterra Integral Equation
In this work we consider a nonlinear Volterra integral equation with weakly singular kernel. An asymptotic error expansion for the explicit Euler’s method is obtained and this allows the use of certain extrapolation procedures. The performance of the extrapolation method is illustrated by several numerical examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2021
ISSN: ['1025-5834', '1029-242X']
DOI: https://doi.org/10.1186/s13660-020-02529-z